Do re-ensiling time and application of Lactobacillus buchneri alter the characteristics of sugarcane silage?

Author:

Faria E. F. S.,da Silva T. C.,Pina D. dos S.,Santos E. M.,de Araújo M. L. G. M. L.,da Silva L. O.,de Carvalho G. G. P.ORCID

Abstract

AbstractThis study aimed to examine the effects of re-ensiling time and Lactobacillus buchneri on the fermentation profile, chemical composition and aerobic stability of sugarcane silages. The experiment was set up as a repeated measure design consisting of four air-exposure periods (EP)(0, 6, 12, and 24 h) microbial additive (A) (L. buchneri; or lack of there), with five replicates. Sugarcane was ground through a stationary forage chopper and ensiled in four plastic drums of 200-L capacity. After 210 days of storage, the drums were opened and half of the silage mass was treated with L. buchneri at the concentration of 105 cfu/g of forage. Subsequently, the silages were divided into stacks. The re-ensiling process was started immediately, at 0, 6, 12 and 24-hour intervals, by transferring the material to PVC mini-silos. Silos were opened after 120 days of re-ensiling. The use of L. buchneri reduced butyrate concentration but did not change ethanol or acetic acid concentrations and aerobic stability. An interaction effect between L. buchneri and re-ensiling time was observed for dry matter (DM) losses and composition. Lactobacillus buchneri is not effective in improving aerobic stability in re-ensiled sugarcane silages. However, less DM is lost in silages treated with L. buchneri and exposed to air for 24 h. Re-ensiling sugar cane in up to 24 h of exposure to air does not change final product quality.

Publisher

Cambridge University Press (CUP)

Subject

Genetics,Agronomy and Crop Science,Animal Science and Zoology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3