Enhanced soil temperature during very early growth and its association with maize development and yield in the Highlands of Kenya

Author:

Cooper P. J. M.,Law R.

Abstract

SummaryPrevious work has shown a strong relationship between the mean soil temperature during the first 5 weeks of growth of a maize crop, and the final grain yield, warmer soils leading to greater yields. Trials were laid down in 1975 and 1976 to establish how early in the development of a maize crop higher soil temperatures would lead to increased yields. Soil temperatures were raised by polythene mulching applied at planting with six times of mulch removal: at crop emergence, 1, 2, 3, 4 and 5 weeks after emergence. Raised soil temperature led to a greater rate of development and leaf area production during early growth. Greater leaf area was due to greater leaf emergence rate rather than increase in leaf size, since increase in soil temperature was associated with a decrease in individual leaf size. This trend was reversed from leaf number 15 onwards resulting in no differences in leaf area, leaf weight or total dry matter at tasselling. In spite of this, yield differences were observed. Increase in soil temperature during germination alone had a beneficial effect on final grain yield, and this effect increased with duration. Increasing soil temperature for longer than 3–4 weeks from emergence caused no further yield increase. Yields increased from 133 and 172 g/ plant to 220 and 238 g/plant in 1975 and 1976 respectively. Yield increases were associated with more grains per plant rather than greater grain size. The period during which increased soil temperature led to increased yields coincided with the period when the apical meristem was below ground level. The mechanism involved is not yet clear.

Publisher

Cambridge University Press (CUP)

Subject

Genetics,Agronomy and Crop Science,Animal Science and Zoology

Reference10 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3