Species detection framework using automated recording units: a case study of the Critically Endangered Jerdon's courser

Author:

Arvind ChitiORCID,Joshi ViralORCID,Charif RussellORCID,Jeganathan PanchapakesanORCID,Robin V. V.ORCID

Abstract

AbstractWith the advent of automated recording units, bioacoustic monitoring has become a popular tool for the collection of long-term data across extensive landscapes. Such methods involve two main components: hardware for audio data acquisition and software for analysis. In the acoustic monitoring of threatened species, a species-specific framework is often essential. Jerdon's courser Rhinoptilus bitorquatus is a Critically Endangered nocturnal bird endemic to a small region of the Eastern Ghats of India, last reported in 2008. Here we describe a reproducible and scalable acoustic detection framework for the species, comparing several commonly available hardware and detection methods and using existing software. We tested this protocol by collecting 24,349 h of data during 5 months. We analysed the data with two commercially available sound analysis programmes, following an analysis pipeline created for this species. Although we did not detect vocalizations of Jerdon's courser, this study provides a framework using a combination of hardware and software for future research that other conservation practitioners can implement. Vocal mimicry can aid or confound in detection and we highlight the potential role of mimicry in the detection of such threatened species. This species-specific acoustic detection framework can be scaled and tailored to monitor other species.

Funder

Wildlife Conservation Trust

Publisher

Cambridge University Press (CUP)

Subject

Nature and Landscape Conservation,Ecology, Evolution, Behavior and Systematics

Reference45 articles.

1. Modelling habitat selection and distribution of the Critically Endangered Jerdon's courser Rhinoptilus bitorquatus in scrub jungle: an application of a new tracking method;Jeganathan;Journal of Applied Ecology,2004

2. Quantifying vocal mimicry in the greater racket-tailed drongo: a comparison of automated methods and human assessment;Agnihotri;PLOS ONE,2014

3. BirdLife International (2017) Rhinoptilus bitorquatus (amended version of 2016 assessment). In The IUCN Red List of Threatened Species 2017. dx.doi.org/10.2305/IUCN.UK.2017-3.RLTS.T22694103A117189206.en.

4. Automated birdsong recognition in complex acoustic environments: a review

5. Use of autonomous recording units increased detection of a secretive marsh bird;Bobay;Journal of Field Ornithology,2018

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3