A user model to directly compare two unmodified interfaces: a study of including errors and error corrections in a cognitive user model

Author:

Tehranchi FarnazORCID,Bagherzadeh Amirreza,Ritter Frank E.

Abstract

Abstract User models that can directly use and learn how to do tasks with unmodified interfaces would be helpful in system design to compare task knowledge and times between interfaces. Including user errors can be helpful because users will always make mistakes and generate errors. We compare three user models: an existing validated model that simulates users’ behavior in the Dismal spreadsheet in Emacs, a newly developed model that interacts with an Excel spreadsheet, and a new model that generates and fixes user errors. These models are implemented using a set of simulated eyes and hands extensions. All the models completed a 14-step task without modifying the system that participants used. These models predict that the task in Excel is approximately 20% faster than in Dismal, including suggesting why, where, and how much Excel is a better design. The Excel model predictions were compared to newly collected human data (N = 23). The model’s predictions of subtask times correlate well with the human data (r2 = .71). We also present a preliminary model of human error and correction based on user keypress errors, including 25 slips. The predictions to data comparison suggest that this interactive model that includes errors moves us closer to having a complete user model that can directly test interface design by predicting human behavior and performing the task on the same interface as users. The errors from the model’s hands also allow further exploration of error detection, error correction, and different knowledge types in user models.

Funder

Office of Naval Research Global

Publisher

Cambridge University Press (CUP)

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Caffeine and cognition: a cognitive architecture-based review;Theoretical Issues in Ergonomics Science;2024-03-18

2. Applications of artificial intelligence and cognitive science in design;Artificial Intelligence for Engineering Design, Analysis and Manufacturing;2024

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3