Abstract
Abstract
User models that can directly use and learn how to do tasks with unmodified interfaces would be helpful in system design to compare task knowledge and times between interfaces. Including user errors can be helpful because users will always make mistakes and generate errors. We compare three user models: an existing validated model that simulates users’ behavior in the Dismal spreadsheet in Emacs, a newly developed model that interacts with an Excel spreadsheet, and a new model that generates and fixes user errors. These models are implemented using a set of simulated eyes and hands extensions. All the models completed a 14-step task without modifying the system that participants used. These models predict that the task in Excel is approximately 20% faster than in Dismal, including suggesting why, where, and how much Excel is a better design. The Excel model predictions were compared to newly collected human data (N = 23). The model’s predictions of subtask times correlate well with the human data (r2 = .71). We also present a preliminary model of human error and correction based on user keypress errors, including 25 slips. The predictions to data comparison suggest that this interactive model that includes errors moves us closer to having a complete user model that can directly test interface design by predicting human behavior and performing the task on the same interface as users. The errors from the model’s hands also allow further exploration of error detection, error correction, and different knowledge types in user models.
Funder
Office of Naval Research Global
Publisher
Cambridge University Press (CUP)
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Caffeine and cognition: a cognitive architecture-based review;Theoretical Issues in Ergonomics Science;2024-03-18
2. Applications of artificial intelligence and cognitive science in design;Artificial Intelligence for Engineering Design, Analysis and Manufacturing;2024