Reuse of constraint knowledge bases and problem solvers explored in engineering design

Author:

Gray Peter M.D.,Runcie Trevor,Sleeman Derek

Abstract

AbstractReuse has long been a major goal of the knowledge engineering community. We present a case study of the reuse of constraint knowledge acquired for one problem solver, by two further problem solvers. For our analysis, we chose a well-known benchmark knowledge base (KB) system written in CLIPS, which was based on the propose and revise problem-solving method and which had a lift/elevator KB. The KB contained four components, including constraints and data tables, expressed in an ontology that reflects the propose and revise task structure. Sufficient trial data was extracted manually to demonstrate the approach on two alternative problem solvers: a spreadsheet (Excel) and a constraint logic solver (ECLiPSe). The next phase was to implement ExtrAKTor, which automated the process for the whole KB. Each KB that is processed results in a working system that is able to solve the corresponding configuration task (and not only for elevators). This is in contrast to earlier work, which produced abstract formulations of the problem-solving methods but which were unable to perform reuse of actual KBs. We subsequently used the ECLiPSe solver on some more demanding vertical transport configuration tasks. We found that we had to use a little-known propagation technique described by Le Provost and Wallace (1991). Further, our techniques did not use any heuristic “fix”’ information, yet we successfully dealt with a “thrashing” problem that had been a key issue in the original vertical transit work. Consequently, we believe we have developed a widely usable approach for solving this class of parametric design problem, by applying novel constraint-based problem solvers to data and formulae stored in existing KBs.

Publisher

Cambridge University Press (CUP)

Subject

Artificial Intelligence,Industrial and Manufacturing Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3