A knowledge transfer method for human-robot collaborative disassembly of end-of-life power batteries based on augmented reality

Author:

Li Jie,Duan LiangliangORCID,Qu WeibinORCID,Zheng Hangbin

Abstract

Abstract The disassembly of power batteries poses significant challenges due to their complex sources, diverse types, variations in design and manufacturing processes, and diverse service conditions. Human memory capacity and robot cognitive and understanding capabilities are limited when faced with different dismantling tasks for end-of-life power batteries. Insufficient human-computer interaction capabilities greatly hinder the efficiency of human-robot collaboration (HRC) operations. The existing HRC relies heavily on the experience of operators, while the existing disassembly system fails to update new disassembly strategies in real time when facing new battery varieties. Therefore, this paper proposes an augmented reality-assisted human-robot collaboration (AR-HRC) power battery dismantling system based on transfer learning. It consists of three modules: AR-HRC knowledge modeling, dismantling subgraph similarity assessment, and strategy transfer update. The AR-HRC knowledge modeling module aims to establish an intelligent mapping from tasks to collaborative strategies based on part features. Based on the evaluation of task similarity, the mobility assessment model divides subtasks into similar and dissimilar classes. For similar subtasks, the original dismantling strategy can be applied to the current task. However, for different subtasks, operators can issue instructions to the AR-HRC system through the human-computer interaction function of AR and develop new collaborative strategies based on actual conditions. Finally, a case study of power battery dismantling is conducted, and the results show that compared to traditional pre-programmed assembly, this system can improve dismantling efficiency and reduce cognitive burden.

Publisher

Cambridge University Press (CUP)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3