Cortical long-axoned cells and putative interneurons during the sleep-waking cycle

Author:

Steriade Mircea

Abstract

AbstractKnowledge of the input-output characteristics of various neuronal types is a necessary first step toward an understanding of cellular events related to waking and sleep. In spite of the oversimplification involved, the dichotomy in terms of type I (long-axoned, output) neurons and type II (short-axoned, local) interneurons is helpful in functionally delineating the neuronal circuits involved in the genesis and epiphenomena of waking and sleep states. The possibility is envisaged that cortical interneurons, which are particularly related to higher neuronal activity and have been found in previous experiments to be more active during sleep than during wakefulness, might be involved in complex integrative processes occurring during certain sleep stages. Electrophysiological criteria for the identification of output cells and interneurons are developed, with emphasis on various possibilities and difficulties involved in recognizing interneurons of the mammalian brain. The high-frequency repetitive activity of interneurons is discussed, together with various possibilities of error to be avoided when interpreting data from bursting cells. Data first show opposite changes in spontaneous and evoked discharges of identified output cells versus putative interneurons recorded from motor and parietal association cortical areas in behaving monkeys and cats during wakefulness (W) compared to sleep with synchronized EEG activity (S): significantly increased rates of spontaneous firing, enhanced antidromic or synaptic responsiveness, associated with shorter periods of inhibition in type I (pyramidal tract, cortico-thalamic and cortico-pontine) cells during W versus significantly decreased frequencies of spontaneous discharge and depression of synaptically elicited reponses of type II cells during W compared to S. These findings are partly explained on the basis of recent iontophoretic studies showing that acetylcholine, viewed as a synaptic transmitter of the arousal system, excites output-type neurons and inhibits high-frequency bursting cells. Comparing W and S to the deepest stage of sleep with desynchronized EEG activity (D) in type I and type II cells revealed that: (a) the increased firing rates of output cells in D, over those in W and S, is substantially due to a tonic excitation during this state, and rapid eye movements (REMs) only contribute to the further increase of discharge frequencies; (b) in contrast, the increased rates of discharge in interneurons during D is entirely ascribable to REM-related firing. On the basis of experiments reporting that increased duration of D has beneficial effects upon retention of information acquired during W, the suggestion is made that increased firing rates of association cortical interneurons during REM epochs of D sleep are an important factor in maintaining the soundness of a memory trace.

Publisher

Cambridge University Press (CUP)

Subject

Behavioral Neuroscience,Physiology,Neuropsychology and Physiological Psychology

Cited by 155 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3