Trading spaces: Computation, representation, and the limits of uninformed learning

Author:

Clark Andy,Thornton Chris

Abstract

Some regularities enjoy only an attenuated existence in a body of training data. These are regularities whose statistical visibility depends on some systematic recoding of the data. The space of possible recodings is, however, infinitely large – it is the space of applicable Turing machines. As a result, mappings that pivot on such attenuated regularities cannot, in general, be found by brute-force search. The class of problems that present such mappings we call the class of “type-2 problems.” Type-1 problems, by contrast, present tractable problems of search insofar as the relevant regularities can be found by sampling the input data as originally coded. Type-2 problems, we suggest, present neither rare nor pathological cases. They are rife in biologically realistic settings and in domains ranging from simple animat (simulated animal or autonomous robot) behaviors to language acquisition. Not only are such problems rife – they are standardly solved! This presents a puzzle. How, given the statistical intractability of these type-2 cases, does nature turn the trick? One answer, which we do not pursue, is to suppose that evolution gifts us with exactly the right set of recoding biases so as to reduce specific type-2 problems to (tractable) type-1 mappings. Such a heavy-duty nativism is no doubt sometimes plausible. But we believe there are other, more general mechanisms also at work. Such mechanisms provide general (not task-specific) strategies for managing problems of type-2 complexity. Several such mechanisms are investigated. At the heart of each is a fundamental ploy – namely, the maximal exploitation of states of representation already achieved by prior, simpler (type-1) learning so as to reduce the amount of subsequent computational search. Such exploitation both characterizes and helps make unitary sense of a diverse range of mechanisms. These include simple incremental learning (Elman 1993), modular connectionism (Jacobs et al. 1991), and the developmental hypothesis of “representational redescription” (Karmiloff-Smith 1979; 1992). In addition, the most distinctive features of human cognition – language and culture – may themselves be viewed as adaptations enabling this representation/computation trade-off to be pursued on an even grander scale.

Publisher

Cambridge University Press (CUP)

Subject

Behavioral Neuroscience,Physiology,Neuropsychology and Physiological Psychology

Cited by 165 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3