Bubble behaviour in a horizontal high-speed solid-body rotating flow

Author:

Rodgar Majid,Scolan Hélène,Marié Jean-Louis,Doppler Delphine,Matas Jean-PhilippeORCID

Abstract

We study experimentally the behaviour of a bubble injected into a horizontal liquid solid-body rotating flow, in a range of rotational velocities where the bubble is close to the axis of rotation. We first study the stretching of the bubble as a function of its size and of the rotation of the cell. We show that the bubble aspect ratio can be predicted as a function of the bubble Weber number by the model of Rosenthal (J. Fluid Mech., vol. 12, 1962, 358–366) provided an appropriate correction due to the impact of buoyancy is included. We next deduce the drag and lift coefficients from the mean bubble position. For large bubbles straddling the axis of rotation, we show that the drag coefficient $C_D$ is solely dependent on the Rossby number $Ro$, with $C_D \approx 1.5/Ro$. In the same limit of large bubbles, we show that the lift coefficient $C_L$ is controlled by the shear Reynolds number $Re_{shear}$ at the scale of the bubble. For $Re_{shear}$ larger than 3000 we observe a sharp transition, wherein large fluctuations in the bubble aspect ratio and mean position occur, and can lead to the break-up of the bubble. We interpret this regime as a resonance between the periodic forcing of the rotating cell and the eigenmodes of the stretched bubble.

Funder

ANR Surfbreak

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3