The effect of tidal force and topography on horizontal convection

Author:

Ding Guang-YuORCID,He Yu-Hao,Xia Ke-QingORCID

Abstract

We present a numerical study on how tidal force and topography influence flow dynamics, transport and mixing in horizontal convection. Our results show that local energy dissipation near topography will be enhanced when the tide is sufficiently strong. Such enhancement is related to the height of the topography and increases as the tidal frequency $\omega$ decreases. The global dissipation is found to be less sensitive to the changes in $\omega$ when the latter becomes small and asymptotically approaches a constant value. We interpret the behaviour of the dissipation as a result of the competition among the dominant forces in the system. According to which mechanism prevails, the flow state of the system can be divided into three regimes, which are the buoyancy-, tide- and drag-control regimes. We show that the mixing efficiency $\eta$ for different tidal energy and topography height can be well described by a universal function $\eta \approx \eta _{HC}/(1+\mathcal {R})$ , where $\eta _{HC}$ is the mixing efficiency in the absence of tide and $\mathcal {R}$ is the ratio between tidal and available potential energy inputs. With this, one can also determine the dominant mechanism at a certain ocean region. We further derive a power law relationship connecting the mixing coefficient and the tidal Reynolds number.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3