Stable channel flow with spanwise heterogeneous surface temperature

Author:

Bon T.ORCID,Meyers J.ORCID

Abstract

Recent studies have demonstrated that large secondary motions are excited by surface roughness with dominant spanwise length scales of the order of the flow's outer length scale. Inspired by this, we explore the effect of spanwise heterogeneous surface temperature in weakly to strongly stratified closed channel flow (at$Ri_\tau =120$, 960;$Re_\tau = 180$, 550) with direct numerical simulations. The configuration consists of equally sized strips of high and low temperature at the lower and upper boundaries, while an overall stable stratification is induced by imposing an average temperature difference between the top and bottom. We consider the influence of the width of the strips (${\rm \pi} /8 \leq \lambda /h \leq 4{\rm \pi} $), Reynolds number, stability and upper boundary condition on the mean flow structure, skin friction and heat transfer. Results indicate that secondary flows are excited, with alternating high- and low-momentum pathways and vortices, similar to the patterns induced by spanwise heterogeneous surface roughness. We find that the impact of the surface heterogeneity on the outer layer depends strongly on the spanwise heterogeneity length scale of the surface temperature. Comparison to stable channel flow with uniform temperature reveals that the heterogeneous surface temperature increases the global friction coefficient and reduces the global Nusselt number in most cases. However, for the high-Reynolds cases with$\lambda /h \geq {\rm \pi} /2$, we find a reduction of the friction coefficient. At stronger stability, the vertical extent of the vortices is reduced and the impact of the heterogeneous temperature on momentum and heat transfer is smaller.

Funder

Fonds Wetenschappelijk Onderzoek

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,Applied Mathematics

Reference69 articles.

1. Surface Heterogeneity Effects on Regional-Scale Fluxes in Stable Boundary Layers: Surface Temperature Transitions

2. Turbulent Secondary Flows

3. The influence of idealized surface heterogeneity on turbulent flux measurements: a parameter study with large-eddy simulation;Roo;Atmos. Chem. Phys.,2018

4. Strömungsgesetze in rauhen Rohren (English translation: Laws of flow in rough pipes);Nikuradse;VDI Forschungsheft,1933

5. Self-similar mixing in stratified plane Couette flow for varying Prandtl number

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3