Marangoni instabilities of drops of different viscosities in stratified liquids

Author:

Li YanshenORCID,Meijer Jochem G.ORCID,Lohse DetlefORCID

Abstract

For an immiscible oil drop immersed in a stably stratified ethanol–water mixture, a downwards solutal Marangoni flow is generated on the surface of the drop, owing to the concentration gradient, and the resulting propulsion competes against the downwards gravitational acceleration of the heavy drop. In prior work of Li et al. (Phys. Rev. Lett., vol. 126, issue 12, 2021, 124502), we found that for drops of low viscosity, an oscillatory instability of the Marangoni flow is triggered once the Marangoni advection is too strong for diffusion to restore the stratified concentration field around the drop. Here we experimentally explore the parameter space of the concentration gradient and drop radius for high oil viscosities and find a different and new mechanism for triggering the oscillatory instability in which diffusion is no longer the limiting factor. For such drops of higher viscosities, the instability is triggered when the gravitational effect is too strong so that the viscous stress cannot maintain a stable Marangoni flow. This leads to a critical drop radius above which the equilibrium is always unstable. Subsequently, a unifying scaling theory that includes both the mechanisms for low and for high viscosities of the oil drops is developed. The transition between the two mechanisms is found to be controlled by two length scales: the drop radius $R$ and the boundary layer thickness $\delta$ of the Marangoni flow around the drop. The instability is dominated by diffusion for $\delta < R$ and by viscosity for $R<\delta$ . The experimental results for various drops of different viscosities can well be described with this unifying scaling theory. Our theoretical description thus provides a unifying view of physicochemical hydrodynamic problems in which the Marangoni stress is competing with a stable stratification.

Funder

Netherlands Center for Multiscale Catalytic Energy Conversion

NWO Gravitation programme funded by the Ministry of Education, Culture and Science of the government of the Netherlands

ERC-Advanced Grant

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3