The fate of continuous input of relatively heavy fluid at the base of a porous medium

Author:

Huppert Herbert E.,Pegler Samuel S.ORCID

Abstract

We evaluate theoretically and confirm experimentally the shape of the fluid envelope resulting from the input of relatively heavy fluid at a constant rate from a point source at the base of a homogeneous porous medium. In three dimensions an initially expanding hemisphere transitions into a gravity current flowing over the assumed rigid, horizontal and impermeable bottom of the porous medium. A range of increasing transition times occurs if defined by extrapolation of the relationships in the two extreme regimes (hemispherical shape and thin-layer gravity current) so that they intersect, for: the ratio of buoyancy to fluid resistance; the horizontal extent of the fluid; the ratio of height at the centre to the radius; and just the height at the centre. Corresponding results are derived for two-dimensional geometries. In this case, we conduct a series of laboratory experiments demonstrating the transition between the radial and gravity current regimes both in terms of form and propagation rate. The results are extrapolated briefly to two-layer systems, in order to begin to understand effects due to vertically heterogeneous pore structures. We sketch, and verify by experiment, that an expanding hemisphere in a lower layer can reach a much more permeable upper layer and flow through it as a gravity current, thereby uniting the two regimes.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3