Explorative gradient method for active drag reduction of the fluidic pinball and slanted Ahmed body

Author:

Li YiqingORCID,Cui Wenshi,Jia Qing,Li Qiliang,Yang Zhigang,Morzyński Marek,Noack Bernd R.ORCID

Abstract

We address a challenge of active flow control: the optimization of many actuation parameters guaranteeing fast convergence and avoiding suboptimal local minima. This challenge is addressed by a new optimizer, called the explorative gradient method (EGM). EGM alternatively performs one exploitive downhill simplex step and an explorative Latin hypercube sampling iteration. Thus, the convergence rate of a gradient based method is guaranteed while, at the same time, better minima are explored. For an analytical multi-modal test function, EGM is shown to significantly outperform the downhill simplex method, the random restart simplex, Latin hypercube sampling, Monte Carlo sampling and the genetic algorithm. EGM is applied to minimize the net drag power of the two-dimensional fluidic pinball benchmark with three cylinder rotations as actuation parameters. The net drag power is reduced by 29 % employing direct numerical simulations at a Reynolds number of $100$ based on the cylinder diameter. This optimal actuation leads to 52 % drag reduction employing Coanda forcing for boat tailing and partial stabilization of vortex shedding. The price is an actuation energy corresponding to 23 % of the unforced parasitic drag power. EGM is also used to minimize drag of the $35^\circ$ slanted Ahmed body employing distributed steady blowing with 10 inputs. 17 % drag reduction are achieved using Reynolds-averaged Navier–Stokes simulations at the Reynolds number $Re_H=1.9 \times 10^5$ based on the height of the Ahmed body. The wake is controlled with seven local jet-slot actuators at all trailing edges. Symmetric operation corresponds to five independent actuator groups at top, middle, bottom, top sides and bottom sides. Each slot actuator produces a uniform jet with the velocity and angle as free parameters, yielding 10 actuation parameters as free inputs. The optimal actuation emulates boat tailing by inward-directed blowing with velocities which are comparable to the oncoming velocity. We expect that EGM will be employed as efficient optimizer in many future active flow control plants as alternative or augmentation to pure gradient search or explorative methods.

Funder

National Natural Science Foundation of China

Agence Nationale de la Recherche

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Reference65 articles.

1. Cornejo Maceda, G.Y. 2021 Gradient-enriched machine learning control exemplified for shear flows in simulations and experiments. PhD thesis, Université Paris-Saclay, France.

2. Barros, D. 2015 Wake and drag manipulation of a bluff body using fluidic forcing. PhD thesis, École Nationale Supérieure de Mécanique et d'Aérotechnique, Poitiers, France.

3. Numerical simulations of flow past three circular cylinders in equilateral-triangular arrangements

4. Low-order model for successive bifurcations of the fluidic pinball

5. Artificial intelligence control applied to drag reduction of the fluidic pinball

Cited by 23 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3