Multilingual SMS-based author profiling: Data and methods

Author:

FATIMA MEHWISHORCID,ANWAR SABA,NAVEED AMNA,ARSHAD WAQAS,NAWAB RAO MUHAMMAD ADEEL,IQBAL MUNTAHA,MASOOD ALIA

Abstract

AbstractIn the recent years, many benchmark author profiling corpora have been developed for various genres including Twitter, social media, blogs, hotel reviews and e-mail, etc. However, no such standard evaluation resource has been developed for Short Messaging Service (SMS), a popular medium of communication, which is very useful for author profiling. The primary aim of this study is to develop a large multilingual (English and Roman Urdu) benchmark SMS-based author profiling corpus. The proposed corpus contains 810 author profiles, wherein each profile consists of an aggregation of SMS messages as a single document of an author, along with seven demographic traits associated with each author profile: gender, age, native language, native city, qualification, occupation and personality type (introvert/extrovert). The secondary aims of this study include the following: (1) annotating the proposed corpus for code-switching annotations at the lexical level (approximately 0.69 million tokens are manually annotated for code-switching) and (2) applying the stylometry-based method (groups of sixty-four features) and the content-based method (twelve features) for gender identification in order to demonstrate how our proposed corpus can be used for the development and evaluation of various author profiling methods. The results show that the content-based character 5-gram feature outperformed all the other features by obtaining the accuracy score of 0.975 andF1score of 0.947 for gender identification while using the entire corpus. Furthermore, our proposed corpora (SMS–AP–18 and code-switched SMS–AP–18) are freely and publicly available for research purpose.

Publisher

Cambridge University Press (CUP)

Subject

Artificial Intelligence,Linguistics and Language,Language and Linguistics,Software

Reference76 articles.

1. Yang Y. , and Pedersen J. O. , 1997. A comparative study on feature selection in text categorization. In Proceedings of the 14th International Conference on Machine Learning (ICML-1997), Nashville, TN, USA, Morgan Kaufmann Publishers Inc., pp. 412–20.

2. Vicente M. , Batista F. , and Carvalho J. P. 2016. Improving Twitter gender classification using multiple classifiers*. In Proceedings of the 8th European Symposium on Computational Intelligence and Mathematics (ESCIM-2016) , Sofia, Bulgaria, pp. 121–7.

3. Treurniet M. , De Clercq O. , Van Den Heuvel H. , and Oostdijk N. , 2012. Collecting a corpus of Dutch SMS. In Proceedings of the 8th International Conference on Language Resources and Evaluation Conference (LREC-2012), Istanbul, Turkey, European Language Resources Association (ELRA), pp. 2268–73.

4. Automatic Text Categorization in Terms of Genre and Author

5. Song Z. , Strassel S. , Lee H. , Walker K. , Wright J. , Garland J. , Fore D. , Gainor B. , Cabe P. , Thomas T. , Callahan B. , and Sawyer A. 2014. Collecting natural SMS and chat conversations in multiple languages: The BOLT phase 2 corpus. In Proceedings of the 9th International Conference on Language Resources and Evaluation (LREC-2014), Reykjavik, Iceland, European Language Resources Association (ELRA).

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3