Abstract
Abstract
In Oklahoma, downy brome and cheat are difficult-to-control winter annual grasses. In the past, cheat infested most of the winter wheat hectares harvested in Oklahoma. Biotypes that are cross-resistant to acetolactate synthase–inhibiting herbicides have left growers with minimal management options for conventional and herbicide-tolerant systems. Field trials near Lahoma, Oklahoma, in 2019–2020 and 2020–2021 evaluated integrated management of cheat and downy brome using three strategies: planting date (optimal, delayed, and late), cultivar selection (high and low competitiveness), and herbicide choice (no herbicide, sulfosulfuron at 35.2 g ai ha−1 and pyroxsulam at 18.4 g ai ha−1). Visual control, weed species present, wheat biomass at heading, and grain yield data were collected. In 2019–2020, 8 to 9 wk after treatment, visual control increased by 15% with the delayed planting compared with the optimal planting date and 14% with the late planting date. In 2020–2021, similar control (∼99%) was recorded for delayed and late plantings with 23% greater control than the optimal timing. Due to a lack of weed coverage, weed biomass in 2019–2020 had no response to planting date, cultivar, or herbicide treatment. Downy brome biomass during 2020–2021 was approximately 90% lower with delayed to late planting dates than the optimal planting date. In the same year, downy brome and cheat biomass were low (≤0.4 and 0.2 g m−2) and 98% less after an herbicide application than a nontreated area. Wheat grain yield at the optimal planting date was greater than yields from delayed and late plantings in 2019–2020. A delay in planting from the optimal date to delayed or late timings decreased wheat yield by 14% and 21%, respectively. In 2020–2021, wheat yield from the late planting was reduced by 57% compared with the optimal planting yield. Delaying the planting date and the use of a common herbicide can suppress cheat and downy brome, but a decline in wheat yield may occur.
Publisher
Cambridge University Press (CUP)