Author:
Tchoufag Joël,Magnaudet Jacques,Fabre David
Abstract
AbstractPath and wake instabilities of buoyancy-driven oblate spheroidal bubbles with a prescribed shape rising freely in a viscous fluid otherwise at rest are studied using global stability analysis, following the technique recently developed for a coupled fluid $\def \xmlpi #1{}\def \mathsfbi #1{\boldsymbol {\mathsf {#1}}}\let \le =\leqslant \let \leq =\leqslant \let \ge =\geqslant \let \geq =\geqslant \def \Pr {\mathit {Pr}}\def \Fr {\mathit {Fr}}\def \Rey {\mathit {Re}}+$ body system by Tchoufag, Fabre & Magnaudet (J. Fluid Mech. vol. 740, 2014, pp. 278–311). The essential role of the wake on the path instability is evidenced by comparing the shape of the global stability diagram with that obtained in the case of a fixed bubble. However, dramatic differences are also found, since the critical curve of the coupled system mostly involves low- and high-frequency oscillating modes, whereas that of a fixed bubble only involves stationary modes. Comparison of the present predictions with results obtained through direct numerical simulation is achieved in several regimes, confirming the predictions of the linear approach but also highlighting some of its limitations when the system successively encounters several unstable modes.
Publisher
Cambridge University Press (CUP)
Subject
Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics
Cited by
26 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献