Linear instability of the path of a freely rising spheroidal bubble

Author:

Tchoufag Joël,Magnaudet Jacques,Fabre David

Abstract

AbstractPath and wake instabilities of buoyancy-driven oblate spheroidal bubbles with a prescribed shape rising freely in a viscous fluid otherwise at rest are studied using global stability analysis, following the technique recently developed for a coupled fluid $\def \xmlpi #1{}\def \mathsfbi #1{\boldsymbol {\mathsf {#1}}}\let \le =\leqslant \let \leq =\leqslant \let \ge =\geqslant \let \geq =\geqslant \def \Pr {\mathit {Pr}}\def \Fr {\mathit {Fr}}\def \Rey {\mathit {Re}}+$ body system by Tchoufag, Fabre & Magnaudet (J. Fluid Mech. vol. 740, 2014, pp. 278–311). The essential role of the wake on the path instability is evidenced by comparing the shape of the global stability diagram with that obtained in the case of a fixed bubble. However, dramatic differences are also found, since the critical curve of the coupled system mostly involves low- and high-frequency oscillating modes, whereas that of a fixed bubble only involves stationary modes. Comparison of the present predictions with results obtained through direct numerical simulation is achieved in several regimes, confirming the predictions of the linear approach but also highlighting some of its limitations when the system successively encounters several unstable modes.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3