Author:
Marxen Olaf,Iaccarino Gianluca,Magin Thierry E.
Abstract
AbstractThe paper describes a numerical investigation of linear and nonlinear instability in high-speed boundary layers. Both a frozen gas and a finite-rate chemically reacting gas are considered. The weakly nonlinear instability in the presence of a large-amplitude two-dimensional wave is investigated for the case of fundamental resonance. Depending on the amplitude of this two-dimensional primary wave, strong growth of oblique secondary perturbations occurs for favourable relative phase differences between the two. For essentially the same primary amplitude, secondary amplification is almost identical for a reacting and a frozen gas. Therefore, chemical reactions do not directly affect the growth of secondary perturbations, but only indirectly through the change of linear instability and hence amplitude of the primary wave. When the secondary disturbances reach a sufficiently large amplitude, strongly nonlinear effects stabilize both primary and secondary perturbations.
Publisher
Cambridge University Press (CUP)
Subject
Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics
Cited by
32 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献