Two-frequency excitation of single-mode Faraday waves

Author:

Batson W.,Zoueshtiagh F.,Narayanan R.

Abstract

AbstractThe purpose of this work is to investigate, for the first time, excitation of Faraday waves in small containers using two commensurate frequencies. This spatial restriction, which is encountered at low frequencies, leads to a wave composed primarily of one spatial eigenmode of the container. When two frequencies are used, the mode resonates primarily with one frequency, while the role of the second is to alter the instability threshold and the resulting nonlinear dynamics. As the parameter space expands greatly as a result of the introduction of three new degrees of freedom, viz. the frequency, amplitude and phase of the new component, the linear theory is first used as a guide to highlight basic two-frequency phenomena. These predictions and nonlinear phenomena are then studied experimentally with the system of Batson, Zoueshtiagh & Narayanan (J. Fluid Mech., vol. 729, 2013, pp. 496–523), who studied single-frequency excitation of different modes in a cylindrical cell. The two-frequency experiments of this work focus on excitation of the fundamental axisymmetric mode, and are quantitatively compared to the model via a posteriori Fourier decomposition of the parametric input. In doing so, experimental dependence of the instability on the new degrees of freedom is demonstrated, in accordance with the model predictions. This is done for a variety of frequency ratios, and overall agreement between the observed and predicted onset conditions is identical to that already reported for the single-frequency experiment. For each frequency ratio, the nonlinear behaviour is experimentally characterized by bifurcation and time series data, which is shown to differ significantly from comparable single-frequency excitations. Finally, we present and discuss a wave in which both temporal frequencies are used to simultaneously excite different spatial modes.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Interface coupling effect and multi-mode Faraday instabilities in a three-layer fluid system;Journal of Fluid Mechanics;2024-03-01

2. Two frequency excitation of Faraday waves in a cylindrical container;Proceeding of Proceedings of the 27th National and 5th International ISHMT-ASTFE Heat and Mass Transfer Conference December 14-17, 2023, IIT Patna, Patna-801106, Bihar, India;2024

3. Faraday Instability in Hele-Shaw Cell with Two Commensurate Frequencies Forcing;Lecture Notes in Mechanical Engineering;2023-11-30

4. Longitudinal and transverse modes of temperature-modulated inclined layer convection;Physical Review E;2023-04-27

5. Controlling the electrostatic Faraday instability using superposed electric fields;Physical Review Fluids;2022-08-24

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3