Author:
Chung D.,Monty J. P.,Ooi A.
Abstract
AbstractDirect numerical simulations of turbulent channel flow at the matched friction Reynolds number of 590, comparing the effect of no-slip versus shear-stress boundary conditions, reveal that the outer flow of wall turbulence, in accord with Townsend’s outer-layer similarity hypothesis, remains largely independent of the viscous sublayer. First- and second-order statistics, including spectra, agree closely from the buffer region out to the centre of the channel. Higher-order statistics also appear to obey the hypothesised similarity, although the influence of boundary conditions is more pronounced than in the lower-order statistics. The statistical agreement in the outer layer, in spite of the structural differences in the viscous sublayer, support Townsend’s idea that the primary effect of the wall is not the no-slip condition, but the impermeability condition imposed by a solid wall.
Publisher
Cambridge University Press (CUP)
Subject
Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics
Cited by
35 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献