THE STATISTICAL CHALLENGES OF MODELLING COVID-19

Author:

Dolton Peter

Abstract

In 2020–2021, the world has been gripped by a pandemic that no living person has ever known. The coronavirus pandemic is undoubtedly the greatest challenge the world has faced in over a generation. The imperative of statistical modelling is not only to manage the short-run crisis for the health services, but also to explain the pandemic’s course and establish the effectiveness of different policies, both non-pharmaceutical and with vaccines. This difficult task has been undertaken by the epidemiologists and others in the face of measurement data problems, behavioural complications and endogeneity issues. This paper proposes a simple taxonomy of the alternative different models and suggests how they may be used together to overcome limitations. This perspective may have important implications for how policy-makers cope with future waves or strains in the current pandemic, or future pandemics.

Publisher

Cambridge University Press (CUP)

Subject

General Economics, Econometrics and Finance

Reference96 articles.

1. Li, Y. , Campbell, H. , Kulkarni, D. , et al. (2020), ‘The temporal association of introducing and lifting non-pharmaceutical interventions with the time-varying reproduction number (R) of SARS-CoV-2: A modelling study across 131 countries’, Lancet. https://www.thelancet.com/journals/laninf/article/PIIS1473-3099(20)30785-4/fulltext.

2. TRACKING THE MUTANT: FORECASTING AND NOWCASTING COVID-19 IN THE UK IN 2021

3. When will the Covid-19 pandemic peak?

4. Harford, T. (2020), ‘Statistics, lies and the virus: Tim Harford’s five lessons from a pandemic’, Financial Times, 10/9/20.

5. NHS England (2020), [Online]. https://www.england.nhs.uk/statistics/statistical-work-areas/covid-19-daily-deaths/.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3