Stability of mirror chambers and mechanics: an example of the improvement of vibrational behaviour
-
Published:2010-10
Issue:MEDSI-6
Volume:1
Page:
-
ISSN:2044-8201
-
Container-title:Diamond Light Source Proceedings
-
language:en
-
Short-container-title:DLS Proc.
Author:
Ruget C.,Nikitina L.,Nicolas J.,Martinez J.C.,Juanhuix J.
Abstract
ALBA synchrotron light facility includes a 3 GeV low-emittance storage ring capable of running in the top-up mode which will feed a number of beamlines. Xaloc and CIRCE are among these beamlines. These beamlines are equipped with mirrors which need high stability. There are a lot of mirror chambers in the market and we decided to improve one of them rather than developing a new one. For this purpose, the ALBA team organized a collaboration with a supplier of beamline components. ALBA did the conceptual design of the improvements, the Finite Element Analysis (FEA) optimization and the metrology tests. The supplier provided a detailed design and the production. The improvement was implemented on several mirror chambers including actuators from two to five degrees of freedom. At the beginning of the project, the hypothesis was an excitation coming from the ground lower than 1 µm for frequencies below 45 Hz and negligible above it. The strategy[0] in terms of dynamical stability was not to amplify the ground excitation below 45 Hz or around 50 Hz. That is, to increase the frequency of the system resonances above 45 Hz (excluding the range of about 50 Hz). As a result, we obtained a high level of stability for such mirror systems and we almost met the target value for the first mode of vibration.
Publisher
Cambridge University Press (CUP)
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献