An Aggregation/Disaggregation Algorithm for Stochastic Automata Networks

Author:

Buchholz Peter

Abstract

Stochastic automata networks (SANs) have recently received much attention in the literature as a means to analyze complex Markov chains in an efficient way. The main advantage of SANs over most other paradigms is that they allow a very compact description of the generator matrix by means of much smaller matrices for single automata. This representation can be exploited in different iterative techniques to compute the stationary solution. However, the set of applicable solution methods for SANs is restricted, because a solution method has to respect the specific representation of the generator matrix to exploit the compact representation. In particular, aggregation/disaggregation (a/d) methods cannot be applied in their usual realization for SANs without losing the possibility to exploit the compact representation of the generator matrix.In this paper, a new a/d algorithm for SANs is introduced. The algorithm differs significantly from standard a/d methods because the parts to be aggregated are defined in a completely different way, exploiting the structure of the generator matrix of a SAN. Aggregation is performed with respect to single automata or sets of automata, which are the basic parts generating a SAN. It is shown that the new algorithm is efficient even if the automata are not loosely coupled.

Publisher

Cambridge University Press (CUP)

Subject

Industrial and Manufacturing Engineering,Management Science and Operations Research,Statistics, Probability and Uncertainty,Statistics and Probability

Cited by 23 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Kronecker Modeling and Analysis of Multidimensional Markovian Systems;Springer Series in Operations Research and Financial Engineering;2018

2. Steady-State Analysis;Kronecker Modeling and Analysis of Multidimensional Markovian Systems;2018

3. Conclusion;Analyzing Markov Chains using Kronecker Products;2012

4. Matrix-Analytic Methods;Analyzing Markov Chains using Kronecker Products;2012

5. Decompositional Methods;Analyzing Markov Chains using Kronecker Products;2012

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3