Author:
Winands E. M. M.,Adan I. J. B. F.,van Houtum G. J.,Down D. G.
Abstract
We consider a two-queue model with state-dependent setups, in which a single server alternately serves the two queues. The high-priority queue is served exhaustively, whereas the low-priority queue is served according to the k-limited strategy. A setup at a queue is incurred only if there are customers waiting at the polled queue. We obtain the transforms of the queue length and sojourn time distributions under the assumption of Poisson arrivals, generally distributed service times, and generally distributed setup times. The interest for this model is fueled by an application in the field of logistics. It is shown how the results of this analysis can be applied in the evaluation of a stochastic two-item single-capacity production system. From these results we can conclude that significant cost reductions are possible by bounding the production runs of the low-priority item, which indicates the potential of the k-limited service discipline as priority rule in production environments.
Publisher
Cambridge University Press (CUP)
Subject
Industrial and Manufacturing Engineering,Management Science and Operations Research,Statistics, Probability and Uncertainty,Statistics and Probability
Cited by
17 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献