Author:
Coffman E.G.,Hofri M.,Weiss G.
Abstract
We analyze the optimal preemptive sequencing of n jobs on two machines to minimize expected total flow time. The running times of the jobs are independent samples from the distribution Pr(X = 1) = p, Pr(X = κ + 1) = 1 − p. We verify that the shortest-expected-remaining-processing-time (SERPT) policy, which is optimal for independent and identically distributed (i.i.d.) running times with a monotone hazard-rate distribution, is not optimal for this distribution. However, we prove that if p ≥ 1/κ, then the number of decisions where SERPT and an optimal policy disagree is bounded by a constant independent of n. For p < 1/k, we prove that the expected number of such decisions has a similar bound. In addition, bounds on the expected increase in flow times under SERPT are derived; these bounds are also independent of n.
Publisher
Cambridge University Press (CUP)
Subject
Industrial and Manufacturing Engineering,Management Science and Operations Research,Statistics, Probability and Uncertainty,Statistics and Probability
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献