Improvement of deconvolution–convolution treatment of axial-divergence aberration in Bragg–Brentano geometry

Author:

Ida Takashi,Ono Shoki,Hattan Daiki,Yoshida Takehiro,Takatsu Yoshinobu,Nomura Katsuhiro

Abstract

An improved method to correct observed shift and asymmetric deformation of diffraction peak profile caused by the axial-divergence aberration in Bragg–Brentano geometry is proposed. The method is based on deconvolution–convolution treatment applying scale transform of abscissa, Fourier transform, and cumulant analysis of an analytical model for the axial-divergence aberration. The method has been applied to the powder diffraction data of a standard LaB6 powder (NIST SRM660a) sample, collected with a one-dimensional Si strip detector. The locations, widths and shape of the peaks in the deconvolved–convolved powder diffraction data have been analyzed. The finally obtained whole powder diffraction pattern ranging from 10° to 145° in diffraction angle has been simulated by the Pawley method applying a symmetric Pearson VII peak profile model to each peak with ten background, two peak-shift, three line-width, and two peak-shape parameters, and the Rp value of the best fit has been estimated at 4.4%.

Publisher

Cambridge University Press (CUP)

Subject

Condensed Matter Physics,Instrumentation,General Materials Science,Radiation

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3