A standard test method for the determination of RIR values by x-ray diffraction

Author:

Schreiner Walter N.

Abstract

The measurement of x-ray diffraction line intensities is the basis for quantitative phase analysis (see for example, Chung (1974), Davis (1986), and Hubbard and Snyder (1988)). While there are many sources of error in such measurements, in recent years computer automation of powder diffractometers and associated analytical software has made such measurements more practical and accurate. For example, profile fitting software has made it possible to determine integrated peak areas and to deconvolute overlapping lines. Another problem which affects quantitative analysis is the systematic error in instrument sensitivity as a function of 20 diffraction angle. This effect has been partially responsible for poor reproducibility of relative intensities between laboratories (Schreiner and Kimmel (1987), and Jenkins and Schreiner (1989)). But, because the error is systematic, corrections may be made by using a standard such as the National Institute of Standards and Technology SRM 1976 alumina plate (NIST 1991). These and other advances have led to a renewed interest in the determination of I/Ic (also called RIR - Reference Intensity Ratio) values for crystalline substances (e.g., Snyder (1992)). I/Ic is defined as the ratio of the intensity of the strongest line of an analyte to the corundum (113) line when the analyte is mixed 50:50 by weight with corundum. We present here a standard procedure used in our laboratory to experimentally measure I/Ic values, and which explicitly incorporates profile fitting and instrument sensitivity corrections. The procedure is written in the format of an ASTM (American Society for Testing and Materials) standard test method, however, inter-laboratory round robin tests have not been carried out to determine precision and bias associated with the method. While the method calls for corundum as the internal standard, another standard material, s, may be used, in which case the procedure will result in a ratio I/Is. Hubbard and Snyder (1988) have shown how to convert between I/Is and I/Ic. This method is based on the procedure routinely published in NBS Monograph 25 until 1986. It is augmented with corrections for the angularly dependent instrument sensitivity and with calculations of I/Ic for both variable and fixed divergence slit configurations. A Quattro Pro spreadsheet is used in our laboratory to do the calculations. An example of the spreadsheet is given in the appendix for one of two I/Ic runs of MgCO3. We also utilize the corundum in the I/Ic runs as an internal standard to determine displacement error corrections for preparation of digitized patterns of pure analyte phases. These patterns are submitted to the International Centre for Diffraction Data for inclusion in a whole pattern data file planned for some time in the future. The notation used here is the standard notation developed for the RIR method by Hubbard and Snyder (1988) and systematically extended by Snyder (1992). A table of the notation is given in the Terminology section below.

Publisher

Cambridge University Press (CUP)

Subject

Condensed Matter Physics,Instrumentation,General Materials Science,Radiation

Reference9 articles.

Cited by 30 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3