Hexagonal boron nitride nanosheets incorporated antireflective silica coating with enhanced laser-induced damage threshold

Author:

Wang Jing,Li Chunhong,Hu Wenjie,Han Wei,Zhu Qihua,Xu Yao

Abstract

Boron nitride (BN) nanosheets incorporated silica antireflective (AR) coating was successfully prepared on fused silica substrate to improve the antilaser-damage ability of transmissive optics used in high-power laser systems. The BN nanosheets were obtained by urea assisted solid exfoliation, and then incorporated into basic-catalyzed silica sols without any further treatment. The transmission electron microscope (TEM) images indicated that the BN nanosheets generally consisted of 2–10 layers. The antireflective BN/$\text{SiO}_{2}$ coating exhibited excellent transmittance as high as 99.89% at 351 nm wavelength on fused silica substrate. The thermal conductivity $0.135~\text{W}\cdot \text{m}^{-1}\cdot \text{K}^{-1}$ of the BN/$\text{SiO}_{2}$ coating with 10% BN addition was about 23% higher than $0.11~\text{W}\cdot \text{m}^{-1}\cdot \text{K}^{-1}$ of the pure $\text{SiO}_{2}$ AR coating. The laser-induced damage threshold (LIDT) of that BN/$\text{SiO}_{2}$ coating is also 23.1% higher than that of pure $\text{SiO}_{2}$ AR coating. This research provides a potential application of BN/$\text{SiO}_{2}$ coatings in high-power laser systems.

Publisher

Cambridge University Press (CUP)

Subject

Nuclear Energy and Engineering,Nuclear and High Energy Physics,Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3