A physical–statistical recipe for representation of small-scale oceanic turbulent mixing in climate models

Author:

Mashayek A.ORCID,Cael B.B.,Cimoli L.,Alford M.H.,Caulfield C.P.ORCID

Abstract

It is well established that small-scale cross-density (diapycnal) turbulent mixing induced by breaking of overturns in the interior of the ocean plays a significant role in sustaining the deep ocean circulation and in regulating tracer budgets such as those of heat, carbon and nutrients. There has been significant progress in the fluid mechanical understanding of the physics of breaking internal waves. Connection of the microphysics of such turbulence to the larger scale dynamics, however, is significantly underdeveloped. We offer a hybrid theoretical–statistical approach, informed by observations, to make such a link. By doing so, we define a bulk flux coefficient, $\varGamma _B$ , which represents the partitioning of energy available to an ‘ocean box’ (such as a grid cell of a coarse resolution climate model), from winds, tides, and other sources, into mixing and dissipation. Here, $\varGamma _B$ depends on both the statistical distribution of turbulent patches and the flux coefficient associated with individual patches, $\varGamma _i$ . We rely on recent parametrizations of $\varGamma _i$ and the seeming universal characteristics of statistics of turbulent patches to infer $\varGamma _B$ , which is the essential quantity for representation of turbulent diffusivity in climate models. By applying our approach to climatology and global tidal estimates, we show that, on a basin scale, energetic mixing zones exhibit moderately efficient mixing that induces significant vertical density fluxes, while quiet zones (with small background turbulence levels), although highly efficient in mixing, exhibit minimal vertical fluxes. The transition between the less energetic to more energetic zones marks regions of intense upwelling and downwelling of deep waters. We suggest that such upwelling and downwelling may be stronger than previously estimated, which in turn has direct implications for the closure of the deep branch of the ocean meridional overturning circulation as well as for the associated tracer budgets.

Funder

Natural Environment Research Council

Publisher

Cambridge University Press (CUP)

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3