Dynamics of sediment-laden plumes in the ocean

Author:

Mingotti NicolaORCID,Woods Andrew W.ORCID

Abstract

We present a series of experiments to illustrate the dynamics of positively or negatively buoyant particle-laden plumes in a cross-flow, with relevance for the discharge of sediment into the ocean during deep-sea mining operations. In an unstratified ambient fluid, our experiments identify three different regimes, corresponding to (i) a dense particle-laden plume, host to relatively dense saline fluid, in which the particles separate from the descending plume as the flow speed falls below the particle settling speed; (ii) a dense particle-laden plume, host to buoyant fluid, in which the fluid gradually rises from the sinking plume of particles, to form a second rising plume of source fluid; and (iii) a buoyant particle-laden plume, host to buoyant fluid, which rises from the discharge pipe, and from which particles gradually sediment. Classical models of single-phase plumes describe the initial motion of the plumes in cases (i) and (iii), but as the flow speed falls below the particle fall speed, sedimentation leads to a change in the averaged buoyancy, and, hence, the plume speed. Our data also suggest that the sedimentation leads to a reduction in the rate of entrainment of ambient fluid, compared with the classical single-phase plumes. We also show that with a density stratified ambient fluid, the stratification may arrest the plume prior to significant particle sedimentation, and in this case, the plume tends to spread downstream at the level of neutral buoyancy where particle sedimentation proceeds. The bulk density of the residual plume fluid may then remain intermediate between the density of the upper and lower layer fluid, or may become less dense than the upper layer fluid, in which case, following sedimentation, the plume fluid rises through the upper layer. While the dynamics of deep-sea mining plumes in the ocean are more complex, for example, owing to background turbulence and mixing, the results of our new laboratory experiments highlight the range of flow processes which may influence the initial dispersion and sedimentation of particles in such plumes following release into the water, depending on the initial conditions, the ambient density and the particle fall speed. We also discuss the relevance of our work in the context of ash dispersal by volcanic plumes.

Publisher

Cambridge University Press (CUP)

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3