Abstract
In offshore offloading operations, two vessels in a side-by-side configuration experience actions of both ambient water waves and liquid sloshing in internal tanks. Under the excitation of water waves, complex multibody motions are induced, resulting in liquid sloshing in tanks, and concurrently liquid sloshing can feedback to affect the vessels’ motions. The interaction between waves and two barges in a side-by-side configuration coupled with liquid sloshing effects is investigated for a fixed–free arrangement. A numerical model is developed based on the boundary element method to deal with complex wave induced multibody motions coupled with liquid sloshing in internal tanks. Due to the presence of a narrow gap between two vessels, gap resonance may occur, and a damping surface is introduced to suppress an unrealistic response near resonance. Concurrently, physical experiments with and without liquid sloshing effects are carried out. In-depth discussions on motion characteristics are given, and Stokes and non-Stokes natural frequencies associated with liquid sloshing are discussed. The significance of the present study is twofold. Firstly, the experimental measurements provide reference results for validations of numerical simulations. Secondly, this work gives an insight into wave induced motions with liquid sloshing effects under different wave headings which affect vessel operational safety.
Funder
National Research Foundation Singapore
Publisher
Cambridge University Press (CUP)
Reference38 articles.
1. Application of a vortex tracking method to the piston-like behaviour in a semi-entrained vertical gap
2. Molin, B. (2002b). LNG-FPSO's: Frequency domain, coupled analysis of support and liquid cargo motion. In Proceedings of international congress of international maritime association of the mediterranean, Crete, Greece.
3. Wave resonances in a narrow gap between two barges using fully nonlinear numerical simulation
4. Tan, Y. , Shao, Y. , & Read, R. (2019). Coupled motion and sloshing analysis of a rigid cylindrical closed fish cage in regular waves. In Proceeding of the 38th international conference on ocean, offshore and arctic engineering, Glasgow, Scotland. New York, NY: American Society of Mechanical Engineers.
5. Chen, X.B. (2004). Hydrodynamics in offshore and naval applications. In Proceeding of the 6th International Conference on Hydrodynamics, Perth, Australia. Taylor & Francis.
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献