GLOBAL WELL-POSEDNESS OF THE PERIODIC CUBIC FOURTH ORDER NLS IN NEGATIVE SOBOLEV SPACES

Author:

OH TADAHIRO,WANG YUZHAO

Abstract

We consider the Cauchy problem for the cubic fourth order nonlinear Schrödinger equation (4NLS) on the circle. In particular, we prove global well-posedness of the renormalized 4NLS in negative Sobolev spaces $H^{s}(\mathbb{T})$, $s>-\frac{1}{3}$, with enhanced uniqueness. The proof consists of two separate arguments. (i) We first prove global existence in $H^{s}(\mathbb{T})$, $s>-\frac{9}{20}$, via the short-time Fourier restriction norm method. By following the argument in Guo–Oh for the cubic NLS, this also leads to nonexistence of solutions for the (nonrenormalized) 4NLS in negative Sobolev spaces. (ii) We then prove enhanced uniqueness in $H^{s}(\mathbb{T})$, $s>-\frac{1}{3}$, by establishing an energy estimate for the difference of two solutions with the same initial condition. For this purpose, we perform an infinite iteration of normal form reductions on the $H^{s}$-energy functional, allowing us to introduce an infinite sequence of correction terms to the $H^{s}$-energy functional in the spirit of the $I$-method. In fact, the main novelty of this paper is this reduction of the $H^{s}$-energy functionals (for a single solution and for the difference of two solutions with the same initial condition) to sums of infinite series of multilinear terms of increasing degrees.

Publisher

Cambridge University Press (CUP)

Subject

Computational Mathematics,Discrete Mathematics and Combinatorics,Geometry and Topology,Mathematical Physics,Statistics and Probability,Algebra and Number Theory,Theoretical Computer Science,Analysis

Reference40 articles.

1. Three-dimensional dispersion of nonlinearity and stability of multidimensional solitons;Turitsyn;Teoret. Mat. Fiz.,1985

2. Quasi-invariant Gaussian measures for the cubic fourth order nonlinear Schrödinger equation;Oh;Probab. Theory Related Fields,2017

3. A pedestrian approach to the invariant Gibbs measure for the 2-d defocusing nonlinear Schrödinger equations;Oh;Stoch. Partial Differ. Equ. Anal. Comput.,2018

4. [33] T. Oh , P. Sosoe  and N. Tzvetkov , ‘An optimal regularity result on the quasi-invariant Gaussian measures for the cubic fourth order nonlinear Schrödinger equation’, Preprint, 2017, arXiv:1707.01666 [math.AP].

5. Periodic fourth-order cubic NLS: Local well-posedness and Non-squeezing property;Kwak;J. Math. Anal. Appl.,2018

Cited by 21 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Intermediate long wave equation in negative Sobolev spaces;Proceedings of the American Mathematical Society, Series B;2024-09-12

2. Uniqueness and non-uniqueness of the Gaussian free field evolution under the two-dimensional Wick ordered cubic wave equation;Annales de l'Institut Henri Poincaré, Probabilités et Statistiques;2024-08-01

3. Propagation of radius of analyticity for solutions to a fourth‐order nonlinear Schrödinger equation;Mathematical Methods in the Applied Sciences;2024-06-30

4. Global Well-Posedness and Scattering for Fourth-Order Schrödinger Equations on Waveguide Manifolds;SIAM Journal on Mathematical Analysis;2024-02-12

5. Sharp well-posedness of the biharmonic Schrödinger equation in a quarter plane;Partial Differential Equations and Applications;2023-10-26

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3