Bounds on multiplicities of symmetric pairs of finite groups

Author:

Aizenbud Avraham,Avni Nir

Abstract

Abstract Let $\Gamma $ be a finite group, let $\theta $ be an involution of $\Gamma $ and let $\rho $ be an irreducible complex representation of $\Gamma $ . We bound ${\operatorname {dim}} \rho ^{\Gamma ^{\theta }}$ in terms of the smallest dimension of a faithful $\mathbb {F}_p$ -representation of $\Gamma /\operatorname {\mathrm {Rad}}_p(\Gamma )$ , where p is any odd prime and $\operatorname {\mathrm {Rad}}_p(\Gamma )$ is the maximal normal p-subgroup of $\Gamma $ . This implies, in particular, that if $\mathbf {G}$ is a group scheme over $\mathbb {Z}$ and $\theta $ is an involution of $\mathbf {G}$ , then the multiplicity of any irreducible representation in $C^\infty \left( \mathbf {G}(\mathbb {Z}_p)/ \mathbf {G} ^{\theta }(\mathbb {Z}_p) \right)$ is bounded, uniformly in p.

Publisher

Cambridge University Press (CUP)

Reference52 articles.

1. Group extensions of $p$ -adic and adelic linear groups;Moore;Inst. Hautes Études Sci. Publ. Math.,1968

2. Uniqueness and disjointness of Klyachko models

3. Discrete Subgroups of Semisimple Lie Groups

4. On the Gelfand property for complex symmetric pairs

5. Invariant distributions on non-distinguished nilpotent orbits with application to the Gelfand property of $\left(G{L}_{2n}(\mathbb{R}),S{p}_{2n}(\mathbb{R})\right)$;Aizenbud;J. Lie Theory,2012

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3