Author:
Aizenbud Avraham,Avni Nir
Abstract
Abstract
Let
$\Gamma $
be a finite group, let
$\theta $
be an involution of
$\Gamma $
and let
$\rho $
be an irreducible complex representation of
$\Gamma $
. We bound
${\operatorname {dim}} \rho ^{\Gamma ^{\theta }}$
in terms of the smallest dimension of a faithful
$\mathbb {F}_p$
-representation of
$\Gamma /\operatorname {\mathrm {Rad}}_p(\Gamma )$
, where p is any odd prime and
$\operatorname {\mathrm {Rad}}_p(\Gamma )$
is the maximal normal p-subgroup of
$\Gamma $
.
This implies, in particular, that if
$\mathbf {G}$
is a group scheme over
$\mathbb {Z}$
and
$\theta $
is an involution of
$\mathbf {G}$
, then the multiplicity of any irreducible representation in
$C^\infty \left( \mathbf {G}(\mathbb {Z}_p)/ \mathbf {G} ^{\theta }(\mathbb {Z}_p) \right)$
is bounded, uniformly in p.
Publisher
Cambridge University Press (CUP)
Reference52 articles.
1. Group extensions of
$p$
-adic and adelic linear groups;Moore;Inst. Hautes Études Sci. Publ. Math.,1968
2. Uniqueness and disjointness of Klyachko models
3. Discrete Subgroups of Semisimple Lie Groups
4. On the Gelfand property for complex symmetric pairs
5. Invariant distributions on non-distinguished nilpotent orbits with application to the Gelfand property of
$\left(G{L}_{2n}(\mathbb{R}),S{p}_{2n}(\mathbb{R})\right)$;Aizenbud;J. Lie Theory,2012