Stratigraphic analysis and paleoenvironmental implications of the Wijchen Member in the lower Rhine-Meuse Valley of the Netherlands

Author:

Autin W.J.

Abstract

AbstractThe Late Pleistocene Wijchen Member (WM) and its informal stratigraphic precursors have been recognized for decades in the Rhine-Meuse Valley of the Netherlands. Although the WM marks the top of the Kreftenheye Formation (KF) at the boundary between Pleistocene and Holocene lithofacies and provides a confining bed for the regional alluvial aquifer, significant issues remain regarding WM depositional environment and processes of sedimentation. Regional WM chronology suggests a time-transgressive, millennium scale response of the Rhine River to Lateglacial climate oscillations. This paper compares interpretations of sedimentation process, stratigraphic pattern, and paleoenvironmental significance to prevailing viewpoints on the WM mode of origin.A flood basin in the Over Betuwe between the channel belts of the Neder Rijn and River Waal is investigated to characterize WM stratigraphy. The KF braided stream deposits (Kb) form a regionally extensive sandy to gravelly lithofacies. As Kb aggradation ceased, fluvial channels incised into local braid plain swales. The WM was deposited during episodes of fluvial activity as a suspended load mud drape across segments of the abandoned braid plain. The WM is a gray silty lithofacies that also contains local admixtures of sand. Explanations for the origin of the sand admixed into the mud include variability in hydrodynamic load across the flood plain, eolian mixing, and/or biogenic mixing. In the study area, eolian deposition of sand onto a wet flood plain surface is the most probable cause for the admixed sand fraction. Pedogenesis of the WM in the study area is limited to gleying under reduced wetland conditions and the development of organic rich vegetation horizons that formed on top of relatively unaltered fluvial strata. Similar reduced soil properties and limited pedogenic development occur downdip to the present coast, but updip of the study area, the WM is the parent material for poorly drained to well drained and oxidized profiles that range from Entisols to weakly expressed Alfisols.The presence of pumice granules in Kb deposits of the study area indicate that channel belt deposition continued after the Laacher See volcanic eruption in Germany at ~12,900 cal yr. Deposition of the WM occurred episodically throughout the Lateglacial and terminated by the early Holocene. The time interval between the end of WM deposition and subsequent burial by flood basin peat reflects a duration of exposure of at least 3500 yrs. Since regional water table rise affected the area ~5000 cal yrs ago, the early Holocene water table must have been maintained by spring fed ground water sources from nearby ice pushed ridges.Deposition of the WM is associated with transitional braided to meandering fluvial channels during times when the Rhine-Meuse Valley experienced a sensitive response to rapid climate change. The WM is regionally time transgressive and probably formed during flood plain transitions between permafrost and base-flow driven hydrologic regimes. Regional landscape dynamics suggest that WM deposition and subsequent preservation was driven by fluctuations of the southern limit of permafrost during Northern Hemisphere deglaciation.

Publisher

Cambridge University Press (CUP)

Subject

Geology

Reference61 articles.

1. Thermal gradients in Europe during the last glacial-interglacial transition

2. Climate forcing of fluvial system development: an evolution of ideas

3. Periglacial palaeoenvironment during the Late Glacial in the Maas valley, The Netherlands;Bohncke;Geologie en Mijnbouw,1993

4. Fluvial history of the northern Upper Rhine River (southwestern Germany) during the Lateglacial and Holocene times

5. De laatglaciale geschiedenis van het verwilderde riviersysteem ten zuidwesten van Nijmegen;Teunissen;Geologie en Mijnbouw,1967

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3