Knowledge-based Reasoning and Learning under Partial Observability in Ad Hoc Teamwork

Author:

DODAMPEGAMA HASRAORCID,SRIDHARAN MOHAN

Abstract

AbstractAd hoc teamwork (AHT) refers to the problem of enabling an agent to collaborate with teammates without prior coordination. State of the art methods in AHT aredata-driven, using a large labeled dataset of prior observations to model the behavior of other agenttypesand to determine the ad hoc agent’s behavior. These methods are computationally expensive, lack transparency, and make it difficult to adapt to previously unseen changes. Our recent work introduced an architecture that determined an ad hoc agent’s behavior based on non-monotonic logical reasoning with prior commonsense domain knowledge and models learned from limited examples to predict the behavior of other agents. This paper describes KAT, a knowledge-driven architecture for AHT that substantially expands our prior architecture’s capabilities to support: (a) online selection, adaptation, and learning of the behavior prediction models; and (b) collaboration with teammates in the presence of partial observability and limited communication. We illustrate and experimentally evaluate KAT’s capabilities in two simulated benchmark domains for multiagent collaboration: Fort Attack and Half Field Offense. We show that KAT’s performance is better than a purely knowledge-driven baseline, and comparable with or better than a state of the art data-driven baseline, particularly in the presence of limited training data, partial observability, and changes in team composition.

Publisher

Cambridge University Press (CUP)

Subject

Artificial Intelligence,Computational Theory and Mathematics,Hardware and Architecture,Theoretical Computer Science,Software

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Unlocking the Potential of Knowledge Graphs: A Cyber Defense Ontology for a Knowledge Representation and Reasoning System;Proceedings of the 19th International Conference on Availability, Reliability and Security;2024-07-30

2. Explanation and Knowledge Acquisition in Ad Hoc Teamwork;Lecture Notes in Computer Science;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3