Abstract
AbstractAd hoc teamwork (AHT) refers to the problem of enabling an agent to collaborate with teammates without prior coordination. State of the art methods in AHT aredata-driven, using a large labeled dataset of prior observations to model the behavior of other agenttypesand to determine the ad hoc agent’s behavior. These methods are computationally expensive, lack transparency, and make it difficult to adapt to previously unseen changes. Our recent work introduced an architecture that determined an ad hoc agent’s behavior based on non-monotonic logical reasoning with prior commonsense domain knowledge and models learned from limited examples to predict the behavior of other agents. This paper describes KAT, a knowledge-driven architecture for AHT that substantially expands our prior architecture’s capabilities to support: (a) online selection, adaptation, and learning of the behavior prediction models; and (b) collaboration with teammates in the presence of partial observability and limited communication. We illustrate and experimentally evaluate KAT’s capabilities in two simulated benchmark domains for multiagent collaboration: Fort Attack and Half Field Offense. We show that KAT’s performance is better than a purely knowledge-driven baseline, and comparable with or better than a state of the art data-driven baseline, particularly in the presence of limited training data, partial observability, and changes in team composition.
Publisher
Cambridge University Press (CUP)
Subject
Artificial Intelligence,Computational Theory and Mathematics,Hardware and Architecture,Theoretical Computer Science,Software
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献