Author:
Kajarabille Naroa,Brown Catriona,Cucliciu Anamaria,Thapaliya Gita,Latunde-Dada Gladys O.
Abstract
AbstractStrategies for preventing Fe deficiency include Fe supplementation and Fe fortification of foods. The absorption, metabolism and chemical characteristics of Fe multi-amino acid chelate (IMAAC) are not known. Absorption of IMAAC was compared with FeSO4in Fe-depleted mice andin vitrochemical studies of the Fe supplement was performed in HuTu 80 cells. Hb repletion study was carried out in Fe-deficient CD1 mice that were fed for 10 d a diet supplemented with ferrous IMAAC or FeSO4. A control group of Fe-replete mice was fed a diet with adequate Fe concentrations throughout the study. Tissues were collected from the mice, and the expression of Fe-related genes was determined by quantitative PCR. Ferric reductase and Fe uptake were evaluated in HuTu 80 cells. Supplementation of the diet with FeSO4or IMAAC significantly increased Hb levels (P<0·001) in Fe-deficient mice from initial 93·9 (SD10·8) or 116·2 (SD9·1) to 191 (SD0·7) or 200 (SD0·5) g/l, respectively. Initial and final Hb for the Fe-deficient control group were 87·4 (SD6·7) and 111 (SD11·7) g/l, respectively. Furthermore, the liver non-haem Fe of both supplement groups increased significantly (P<0·001). IMAAC was more effective at restoring Fe in the spleen compared with FeSO4(P<0·005). Gene expression showed the IMAAC supplement absorption is regulated by the body’s Fe status as it significantly up-regulated hepcidin (P<0·001) and down-regulated duodenal cytochrome b mRNA (P<0·005), similar to the effects seen with FeSO4. A significant proportion of Fe in IMAAC is reduced by ascorbic acid. Fe absorption in mice and cells was similar for both IMAAC and FeSO4and both compounds induce and regulate Fe metabolism genes similarly in the maintenance of homeostasis in mice.
Publisher
Cambridge University Press (CUP)
Subject
Nutrition and Dietetics,Medicine (miscellaneous)
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献