Abstract
AbstractWe provide a complete analysis of the motivic Adams spectral sequences converging to the bigraded coefficients of the 2-complete algebraic Johnson-Wilson spectra BPGL〈n〉 over p-adic fields. These spectra interpolate between integral motivic cohomology (n = 0), a connective version of algebraic K-theory (n = 1), and the algebraic Brown-Peterson spectrum (n = ∞). We deduce that, over p-adic fields, the 2-complete BPGL〈n〉 splits over 2-complete BPGL〈0〉, implying that the slice spectral sequence for BPGL collapses.This is the first in a series of two papers investigating motivic invariants of p-adic fields, and it lays the groundwork for an understanding of the motivic Adams-Novikov spectral sequence over such base fields.
Publisher
Cambridge University Press (CUP)
Subject
Geometry and Topology,Algebra and Number Theory
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献