Abstract
This paper considers specification testing for regression models with errors-in-variables and proposes a test statistic comparing the distance between the parametric and nonparametric fits based on deconvolution techniques. In contrast to the methods proposed by Hall and Ma (2007, Annals of Statistics, 35, 2620–2638) and Song (2008, Journal of Multivariate Analysis, 99, 2406–2443), our test allows general nonlinear regression models and possesses complementary local power properties. We establish the asymptotic properties of our test statistic for the ordinary and supersmooth measurement error densities. Simulation results endorse our theoretical findings: our test has advantages in detecting high-frequency alternatives and dominates the existing tests under certain specifications.
Publisher
Cambridge University Press (CUP)
Subject
Economics and Econometrics,Social Sciences (miscellaneous)
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献