INFERENCE FOR OPTION PANELS IN PURE-JUMP SETTINGS

Author:

Andersen Torben G.,Fusari Nicola,Todorov Viktor,Varneskov Rasmus T.

Abstract

We develop parametric inference procedures for large panels of noisy option data in a setting, where the underlying process is of pure-jump type, i.e., evolves only through a sequence of jumps. The panel consists of options written on the underlying asset with a (different) set of strikes and maturities available across the observation times. We consider an asymptotic setting in which the cross-sectional dimension of the panel increases to infinity, while the time span remains fixed. The information set is augmented with high-frequency data on the underlying asset. Given a parametric specification for the risk-neutral asset return dynamics, the option prices are nonlinear functions of a time-invariant parameter vector and a time-varying latent state vector (or factors). Furthermore, no-arbitrage restrictions impose a direct link between some of the quantities that may be identified from the return and option data. These include the so-called jump activity index as well as the time-varying jump intensity. We propose penalized least squares estimation in which we minimize the L2 distance between observed and model-implied options. In addition, we penalize for the deviation of the model-implied quantities from their model-free counterparts, obtained from the high-frequency returns. We derive the joint asymptotic distribution of the parameters, factor realizations and high-frequency measures, which is mixed Gaussian. The different components of the parameter and state vector exhibit different rates of convergence, depending on the relative (asymptotic) informativeness of the high-frequency return data and the option panel.

Publisher

Cambridge University Press (CUP)

Subject

Economics and Econometrics,Social Sciences (miscellaneous)

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3