Counting Connected Hypergraphs via the Probabilistic Method

Author:

BOLLOBÁS BÉLA,RIORDAN OLIVER

Abstract

In 1990 Bender, Canfield and McKay gave an asymptotic formula for the number of connected graphs on [n] = {1,2,. . .,n} withmedges, whenevernand the nullitymn+1 tend to infinity. LetCr(n,t) be the number of connectedr-uniform hypergraphs on [n] with nullityt= (r−1)mn+1, wheremis the number of edges. Forr≥ 3, asymptotic formulae forCr(n,t) are known only for partial ranges of the parameters: in 1997 Karoński and Łuczak gave one fort=o(logn/log logn), and recently Behrisch, Coja-Oghlan and Kang gave one fort=Θ(n). Here we prove such a formula for any fixedr≥ 3 and anyt=t(n) satisfyingt=o(n) andt→∞ asn→∞, complementing the last result. This leaves open only the caset/n→∞, which we expect to be much simpler, and will consider in future work. The proof is based on probabilistic methods, and in particular on a bivariate local limit theorem for the number of vertices and edges in the largest component of a certain random hypergraph. We deduce this from the corresponding central limit theorem by smoothing techniques.

Publisher

Cambridge University Press (CUP)

Subject

Applied Mathematics,Computational Theory and Mathematics,Statistics and Probability,Theoretical Computer Science

Reference31 articles.

1. The number of connected sparsely edged graphs. III. Asymptotic results

2. Enumeration of homogeneous hypergraphs with a simple cycle structure;Selivanov;Kombinatornyĭ Anal.,1972

3. Sato C. M. and Wormald N. Asymptotic enumeration of sparse connected 3-uniform hypergraphs. arXiv:1401.7381

4. The asymptotic number of labeled connected graphs with a given number of vertices and edges

5. Scott A. and Tateno A. On the number of triangles in a random graph. Manuscript.

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Phase Transition in Cohomology Groups of Non-Uniform Random Simplicial Complexes;The Electronic Journal of Combinatorics;2022-07-29

2. Counting Sparse k-edge-connected Hypergraphs with Given Number of Vertices and Edges;Electronic Notes in Theoretical Computer Science;2019-08

3. Counting dense connected hypergraphs via the probabilistic method;Random Structures & Algorithms;2018-02-13

4. Exploring hypergraphs with martingales;Random Structures & Algorithms;2016-11-21

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3