Author:
ARRATIA RICHARD,BARBOUR A. D.,TAVARÉ SIMON
Abstract
We show that the Poisson–Dirichlet distribution is the distribution of points in a scale-invariant Poisson process, conditioned on the event that the sum T of the locations of
the points in (0,1] is 1. This extends to a similar result,
rescaling the locations by T, and
conditioning on the event that T[les ]1. Restricting both processes to
(0, β] for 0<β[les ]1,
we give an explicit formula for the total variation distance between their distributions.
Connections between various representations of the Poisson–Dirichlet process are discussed.
Publisher
Cambridge University Press (CUP)
Subject
Applied Mathematics,Computational Theory and Mathematics,Statistics and Probability,Theoretical Computer Science
Cited by
17 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献