Three-dimensionally perturbed vortex tubes in a rotating flow

Author:

CARNEVALE G. F.,BRISCOLIN M.,KLOOSTERZIEL R. C.,VALLIS G. K.

Abstract

Numerical experiments are used to study the evolution of perturbed vortex tubes in a rotating environment in order to better understand the process of two-dimensionalization of unsteady rotating flows. We specifically consider non-axisymmetric perturbations to columnar vortices aligned along the axis of rotation. The basic unperturbed vortex is chosen to have a Gaussian cross-sectional vorticity distribution. The experiments cover a parameter space in which both the strength of the initial perturbation and the Rossby number are varied. The Rossby number is defined here as the ratio of the maximum amplitude of vorticity in the Gaussian vorticity profile to twice the ambient rotation rate. For small perturbations and small Rossby numbers, both cyclones and anticyclones behave similarly, relaxing rapidly back toward two-dimensional columnar vortices. For large perturbations and small Rossby numbers, a rapid instability occurs for both cyclones and anticyclones in which antiparallel vorticity is created. The tubes break up and then re-form again into columnar vortices parallel to the rotation axis (i.e. into a quasi-two-dimensional flow) through nonlinear processes. For Rossby numbers greater than 1, even small perturbations result in the complete breakdown of the anticyclonic vortex through centrifugal instability, while cyclones remain stable. For a range of Rossby numbers greater than 1, after the breakdown of the anticyclone, a new weaker anticyclone forms, with a small-scale background vorticity of spectral shape given approximately by the −5/3 energy spectral law.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 27 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3