Instabilities of a buoyancy-driven system

Author:

Gill A. E.,Davey A.

Abstract

A buoyancy-driven system can be unstable due to two different mechanisms—one mechanical and the other involving buoyancy forces. The mechanical instability is of the type normally studied in connexion with the Orr-Sommerfeld equation. The buoyancy-driven instability is rather different and is related to the ‘Coriolis’-driven instability of rotating fluids. In this paper, the stability of a buoyancy-driven system, recently called a ‘buoyancy layer’, is examined for the whole range of Prandtl numbers, s. The buoyancy-driven instability becomes increasingly important as the Prandtl number is increased and so particular interest is attached to the limit in which the Prandtl number tends to infinity. In this limit, the system is neutrally stable to first order, but second-order effects render the flow unstable at a Reynolds number of order σ-½. Consequences of the results for the stability of convection in a vertical slot are examined.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Reference22 articles.

1. Veronis, G. 1967 Tellus,19,326.

2. Rudakov, R. N. 1967 PMM,31,367.

3. Prandtl, L. 1952 Essentials of Fluid Dynamics .New York:Hafner.

4. Lilly, D. K. 1966 J. Atmos. Sci. 23,481.

5. Gregory, N. , Stuart, J. T. & Walker, W. S. 1955 Phil. Trans. A,248,155.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3