Numerical simulation of turbulent convection over wavy terrain

Author:

Krettenauer Kilian,Schumann Ulrich

Abstract

Thermal convection of a Boussinesq fluid in a layer confined between two infinite horizontal walls is investigated by direct numerical simulation (DNS) and by large-eddy simulation (LES) for zero horizontal mean motion. The lower-surface height varies sinusoidally in one horizontal direction while remaining constant in the other. Several cases are considered with amplitude δ up to 0.15H and wavelength λ of H to 8H (inclination up to 43°), where H is the mean fluid-layer height. Constant heat flux is prescribed at the lower surface of the initially at rest and isothermal fluid layer. In the LES, the surface is treated as rough surface (z0 = 10−4H) using the Monin-Oboukhov relationships. At the flat top an adiabatic frictionless boundary condition is applied which approximates a strong capping inversion of an atmospheric convective boundary layer. In both horizontal directions, the model domain extends over the same length (either 4H or 8H) with periodic lateral boundary conditions.We compare DNS of moderate turbulence (Reynolds number based on H and on the convective velocity is 100, Prandtl number is 0.7) with LES of the fully developed turbulent state in terms of turbulence statistics and Characteristic large-scale-motion structures. The LES results for a flat surface generally agree well with the measurements of Adrian et al. (1986). The gross features of the flow statistics, such as profiles of turbulence variances and fluxes, are found to be not very sensitive to the variations of wavelength, amplitude, domain size and resolution and even the model type (DNS or LES), whereas details of the flow structure are changed considerably. The LES shows more turbulent structures and larger horizontal scales than the DNS. To a weak degree, the orography enforces rolls with axes both perpendicular and parallel to the wave crests and with horizontal wavelengths of about 2H to 4H. The orography has the largest effect for λ = 4H in the LES and for λ = 2H in the DNS. The results change little when the size of the computational domain is doubled in both horizontal directions. Most of the motion energy is contained in the large-scale structures and these structures are persistent in time over periods of several convective time units. The motion structure persists considerably longer over wavy terrain than over flat surfaces.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Reference50 articles.

1. Schumann, U. 1992 A simple model of the convective boundary layer over wavy terrain with variable heat flux.Beitr. Phys. Atmos. 64, No. 3 (in press).

2. Schmidt, H. 1988 Grobstruktur-Simulation konvektiver Grenzschichten. thesis,University of Munich; Rep. DFVLR-FB 88-30, DLR Oberpfaffenhofen, 143 pp.

3. Moeng, C.-H. & Rotunno, R. 1990 Vertical-velocity skewness in the buoyancy-driven boundary layer.J. Atmos. Sci. 47,1149–1162.

4. Priestley, C. H. B. 1962 The width-height ratio of large convective cells.Tellus 14,123–124.

5. Huynh, B. P. , Coulman, C. E. & Turner, T. R. 1990 Some turbulence characteristics of convectively mixed layers over rugged and homogeneous terrain.Boundary-Layer Met. 51,229–254.

Cited by 74 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3