Computer simulations of polymer chain relaxation via Brownian motion

Author:

Grassia P.,Hinch E. J.

Abstract

Numerical simulations are employed to study the Brownian motion of a bead-rod polymer chain dissolved in a solvent. An investigation is conducted of the relaxation of the stress for an initially straight chain as it begins to coil.For a numerical time step δt in the simulations, conventional formulae for the stress involve averaging large ±O(1/(δt)1/2) contributions over many realizations, in order to yield an O(1) average. An alternative formula for the stress is derived which only contains O(1) contributions, thereby improving the quality of the statistics.For a chain consisting of n rods in a solvent at temperature T, the component of the bulk stress along the initial chain direction arising from tensions in the rods at the initial instant is $k\hat{T}\times n(\frac{1}{3}n^2 + n +\frac{2}{3})$. Thus the bead-rod model yields results very different from other polymer models, such as the entropic spring of Flory (1969), which would assign an infinite stress to a fully aligned chain. For rods of length l and beads of friction factor $\hat{\zeta}$ the stress decays at first on $O(\hat{\zeta}\hat{l}^2/k\hat{T}\times 1/n^2)$ time scales. On longer time scales, this behaviour gives way to a more gradual stress decay, characterized by an $O(k\hat{T}\times n)$ stress following a simple exponential decay with an $O(k\hat{T}/\hat{\zeta}\hat{l}^2\times 1/n^2)$ rate. Matching these two limiting regimes, a power law decay in time t is found with stress $O(k\hat{T}\times n^2\times (k\hat{T}\hat{t}/\hat{\zeta}\hat{l}^2)^{-1/2})$. The dominant physical processes occurring in these separate short, long and intermediate time regimes are identified.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Reference31 articles.

1. Rallison, J. M. 1979 The role of rigidity constraints in the rheology of dilute polymer solutions.J. Fluid Mech. 93,251–279.

2. Bird, R. , Curtiss, C. , Armstrong, R. & Hassager, O. 1987 Dynamics of Polymeric Fluids. John Wiley & Sons.

3. Kirkwood, J. & Riseman, J. 1956 The statistical mechanical theory of irreversible processes in solutions of macromolecules. In Rheology Theory and Applications (ed. F. Eirich ), Vol. 1, ch. 13, p. 495 Academic. Also in John Gamble Kirkwood Collected Works: Macromolecules (ed. P. Aeur ), pp32–56.1967 Gordon & Breach.

4. Kramers, H. A. 1946 The behaviour of macromolecules in inhomogeneous flows.J. Chem. Phys. 14,415–424.

5. Flory, P. 1969 Statistical Mechanics of Chain Molecules. John Wiley & Sons.

Cited by 90 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3