Granular column collapses: further experimental results

Author:

THOMPSON ERICA L.,HUPPERT HERBERT E.

Abstract

Experimental observations of the collapse of initially static columns of sand in axisymmetric and two-dimensional geometries are presented. The experiments were carried out using cylinders and rectangular tanks 30 to 60 cm tall, and cover aspect ratios between 0.5 and 20, where the aspect ratio is defined as the ratio of the initial height to horizontal extent of the column. The final positions of sand grains from different points initially on the outer surface of the columns are mapped. For all axisymmetric columns the point of maximum runout is found to originate from a point at fractional height 0.74 ± 0.03 of the initial vertical height of the column, independent of the aspect ratio. For two-dimensional columns the corresponding point is 0.65 ± 0.07. Collapses of columns of water-saturated sand into water display a different form of flow, which leads to there being no such well-defined point. In this case, grains from all but the innermost, basal areas of the initial column can end up in the outermost region of the final deposit. For collapses in air and aspect ratios greater than 1, the detail of the initial geometry is relatively insignificant in determining the shape of the final deposit. The results of this and previous studies thus have general applicability, even to situations with less initial symmetry. Movies are available with the online version of the paper.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Reference19 articles.

1. Failure of a granular step;Siavoshi;Phys. Rev.,2005

2. Collapses of granular columns;Lube;Phys. Rev.,2005

3. Granular matter: a tentative view;de;Rev. Mod. Phys,1999

4. Granular solids, liquids, and gases

5. Built upon sand: Theoretical ideas inspired by granular flows

Cited by 69 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3