Can bottom friction suppress ‘freak wave’ formation?

Author:

VORONOVICH VIACHESLAV V.,SHRIRA VICTOR I.,THOMAS GARETH

Abstract

The paper examines the effect of the bottom stress on the weakly nonlinear evolution of a narrow-band wave field, as a potential mechanism of suppression of ‘freak’ wave formation in water of moderate depth. Relying upon established experimental studies the bottom stress is modelled by the quadratic drag law with an amplitude/bottom roughness-dependent drag coefficient. The asymptotic analysis yields Davey–Stewartson-type equations with an added nonlinear complex friction term in the envelope equation. The friction leads to a power-law decay of the spatially uniform wave amplitude. It also affects the modulational (Benjamin–Feir) instability, e.g. alters the growth rates of sideband perturbations and the boundaries of the linearized stability domains in the modulation wavevector space. Moreover, the instability occurs only if the amplitude of the background wave exceeds a certain threshold. Since the friction is nonlinear and increases with wave amplitude, its effect on the formation of nonlinear patterns is more dramatic. Numerical experiments show that even when the friction is small compared to the nonlinear term, it hampers formation of the Akhmediev/Ma-type breathers (believed to be weakly nonlinear ‘prototypes’ of freak waves) at the nonlinear stage of instability. The specific predictions for a particular location depend on the bottom roughness ks in addition to the water depth and wave field characteristics.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Reference57 articles.

1. Unsteady water wave modulations: fully nonlinear solutions and comparison with the nonlinear Schrödinger equation

2. Swart D. H. 1974 Offshore sediment transport and equilibrium beach profiles. Delft Hydraulics, Publ. 131.

3. A model of the bottom boundary layer in water waves;Kajiura;Bull. Earthq. Res. Inst.,1968

4. Evolution of solitons over a randomly rough seabed;Mei;Phys. Rev.,2004

5. McLaughlin D. W. & Shatah J. 1998 Homoclinic orbits for pde's. In Recent Advances in Partial Differential Equations, Venice 1996. Proc. Symp. Appl. Maths, vol. 54, pp. 281–299. Am. Math. Soc., Providence, R.I.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3