Author:
Owen J. M.,Pincombe J. R.
Abstract
Flow visualization and laser-doppler anemometry have been used to determine the flow structure and measure the velocity distribution inside a rotating cylindrical cavity with an outer to inner radius ratio of 10, and an axial spacing to inner radius ratio of 2·67. A flow structure comprising an inner layer, Ekman layers, an outer layer and an interior potential core has been confirmed for the cases where the inlet air enters the cavity either axially, through a central hole, or radially, through a central gauze tube, and leaves radially through a series of holes in the peripheral shroud. Velocity measurements in the laminar Ekman layers agree well with the ‘modified linear theory’, and long-and short-wavelength disturbances (which have been reported by other experimenters) have been observed on the Ekman layers when the radial Reynolds number exceeds a critical value. The phenomenon of reverse flow in the Ekman layers and the possibility of ingress of external fluid through the holes in the shroud have also been observed.
Publisher
Cambridge University Press (CUP)
Subject
Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics
Cited by
52 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献