Potential flow solution for a yawed surface-piercing plate

Author:

Xü Hongbo

Abstract

This paper presents the results of an analytical investigation of the steady translation of a vertical surface-piercing plate at a small angle of attack. This problem is the antisymmetric equivalent of the symmetric thin-ship problem solved by Michell. The linearized boundary-value problem is transformed into an integral equation of the first kind by the method of Green functions. The Kelvin–Havelock Green function is used to satisfy the linearized free-surface boundary condition and radiation condition. A pressure Kutta condition is imposed at the trailing edge. Effective algorithms are developed to evaluate the hypersingular kernel without recourse to numerical integration. The resulting integral equation is solved by a collocation method with a refined scheme of discretization. After establishing the convergence of the present algorithm, computations are carried out for a surface-piercing rectangular plate of aspect ratio 0.5. The integrated lateral-force and yaw-moment coefficients show good agreement with experimental data. Other parameters of the flow such as pressure distributions, drag, strength of leading-edge singularity and free-surface profiles on the plate are also presented. The incompatibility between the pressure Kutta condition and the linearized free-surface condition does not affect the global solution.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3