The steady motion of a particle of arbitrary shape at small Reynolds numbers

Author:

Cox R. G.

Abstract

The results given by Brenner & Cox (1963) for the resistance of a particle of arbitrary shape in translation at small Reynolds numbers are generalized. Thus we consider here a single particle of arbitrary shape moving with both translation and rotation in an infinite fluid, the Reynolds number R of the fluid motion being assumed small. With the additional assumption that the motion is steady with respect to some inertial frame of reference, we calculate both the force and couple on the body as an expansion in the Reynolds number to O(R2 In R). This force and couple are expressed entirely in terms of various Stokes flows for the given body in rotation or translation.A discussion is given of the form taken by the formulae for the force and couple for cases in which the body possesses symmetry properties. Quantitative results are obtained for both a spheroid and a dumb-bell-shaped body in pure translation and also for a translating rotating sphere and for a dumb-bell-shaped body in pure rotation.The application of the general results to ‘quasi-steady’ problems is considered, with particular reference to a freely falling spheroid (of small eccentricity) which is shown to orientate itself so that it is broad-side on to its direction of motion.Finally the general results are compared with those that would be obtained by the use of the Oseen equations. By consideration of a particular example it is shown that the Oseen equations do not in general give the correct value of the force on the body to O(R).

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Reference8 articles.

1. Brenner, H. 1964a Chem. Engng Sci. 19,519.

2. Rubinow, S. I. & Keller, J. B. 1961 J. Fluid Mech. 11,447.

3. Brenner, H. 1963 Chem. Engng Sci. 18,1.

4. Breach, D. R. 1961 J. Fluid Mech. 10,306.

5. Brenner, H. 1964b Chem. Engng Sci. 19,599.

Cited by 111 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3